mirror of
https://github.com/shareAI-lab/analysis_claude_code.git
synced 2026-02-04 13:16:37 +08:00
Compare commits
4 Commits
65e26083de
...
1521580cba
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
1521580cba | ||
|
|
e9330cd379 | ||
|
|
6f1c74ad6a | ||
|
|
ddecf7d845 |
21
.env.example
21
.env.example
@ -1,4 +1,21 @@
|
||||
# API Configuration
|
||||
# Provider Selection (defaults to anthropic for backward compatibility)
|
||||
AI_PROVIDER=anthropic # Options: anthropic, openai, gemini, or any OpenAI-compatible service
|
||||
|
||||
# Model Name (auto-defaults based on provider, but can be overridden)
|
||||
MODEL_NAME=kimi-k2-turbo-preview
|
||||
|
||||
# Anthropic Configuration
|
||||
ANTHROPIC_API_KEY=sk-xxx
|
||||
ANTHROPIC_BASE_URL=https://api.moonshot.cn/anthropic
|
||||
MODEL_NAME=kimi-k2-turbo-preview
|
||||
|
||||
# OpenAI Configuration
|
||||
OPENAI_API_KEY=sk-xxx
|
||||
OPENAI_BASE_URL=https://api.openai.com/v1
|
||||
|
||||
# Google Gemini Configuration (via OpenAI-compatible endpoint)
|
||||
GEMINI_API_KEY=xxx
|
||||
GEMINI_BASE_URL=https://generativelanguage.googleapis.com/v1beta/openai/
|
||||
|
||||
# Example: Custom OpenAI-compatible service
|
||||
# CUSTOM_API_KEY=xxx
|
||||
# CUSTOM_BASE_URL=https://api.custom-service.com/v1
|
||||
|
||||
@ -37,11 +37,12 @@ A progressive tutorial that demystifies AI coding agents like Kode, Claude Code,
|
||||
## Quick Start
|
||||
|
||||
```bash
|
||||
pip install anthropic python-dotenv
|
||||
# Install dependencies
|
||||
pip install -r requirements.txt
|
||||
|
||||
# Configure your API
|
||||
cp .env.example .env
|
||||
# Edit .env with your API key
|
||||
# Edit .env with your API key (supports Anthropic, OpenAI, Gemini, etc.)
|
||||
|
||||
# Run any version
|
||||
python v0_bash_agent.py # Minimal
|
||||
|
||||
242
provider_utils.py
Normal file
242
provider_utils.py
Normal file
@ -0,0 +1,242 @@
|
||||
"""
|
||||
Provider utilities for multi-provider AI agent support.
|
||||
|
||||
This module provides a unified interface for multiple AI providers (Anthropic, OpenAI, Gemini),
|
||||
allowing the existing agent code (v0-v4) to run unchanged.
|
||||
|
||||
It uses the Adapter Pattern to make OpenAI-compatible clients look exactly like
|
||||
Anthropic clients to the consuming code.
|
||||
"""
|
||||
|
||||
import os
|
||||
import json
|
||||
from typing import Any, Dict, List, Union, Optional
|
||||
from dotenv import load_dotenv
|
||||
|
||||
# Load environment variables
|
||||
load_dotenv()
|
||||
|
||||
# =============================================================================
|
||||
# Data Structures (Mimic Anthropic SDK)
|
||||
# =============================================================================
|
||||
|
||||
class ResponseWrapper:
|
||||
"""Wrapper to make OpenAI responses look like Anthropic responses."""
|
||||
def __init__(self, content, stop_reason):
|
||||
self.content = content
|
||||
self.stop_reason = stop_reason
|
||||
|
||||
class ContentBlock:
|
||||
"""Wrapper to make content blocks look like Anthropic content blocks."""
|
||||
def __init__(self, block_type, **kwargs):
|
||||
self.type = block_type
|
||||
for key, value in kwargs.items():
|
||||
setattr(self, key, value)
|
||||
|
||||
def __repr__(self):
|
||||
attrs = ", ".join(f"{k}={v!r}" for k, v in self.__dict__.items())
|
||||
return f"ContentBlock({attrs})"
|
||||
|
||||
# =============================================================================
|
||||
# Adapters
|
||||
# =============================================================================
|
||||
|
||||
class OpenAIAdapter:
|
||||
"""
|
||||
Adapts the OpenAI client to look like an Anthropic client.
|
||||
|
||||
Key Magic:
|
||||
self.messages = self
|
||||
|
||||
This allows the agent code to call:
|
||||
client.messages.create(...)
|
||||
|
||||
which resolves to:
|
||||
adapter.create(...)
|
||||
"""
|
||||
def __init__(self, openai_client):
|
||||
self.client = openai_client
|
||||
self.messages = self # Duck typing: act as the 'messages' resource
|
||||
|
||||
def create(self, model: str, system: str, messages: List[Dict], tools: List[Dict], max_tokens: int = 8000):
|
||||
"""
|
||||
The core translation layer.
|
||||
Converts Anthropic inputs -> OpenAI inputs -> OpenAI API -> Anthropic outputs.
|
||||
"""
|
||||
# 1. Convert Messages (Anthropic -> OpenAI)
|
||||
openai_messages = [{"role": "system", "content": system}]
|
||||
|
||||
for msg in messages:
|
||||
role = msg["role"]
|
||||
content = msg["content"]
|
||||
|
||||
if role == "user":
|
||||
if isinstance(content, str):
|
||||
# Simple text message
|
||||
openai_messages.append({"role": "user", "content": content})
|
||||
elif isinstance(content, list):
|
||||
# Tool results (User role in Anthropic, Tool role in OpenAI)
|
||||
for part in content:
|
||||
if part.get("type") == "tool_result":
|
||||
openai_messages.append({
|
||||
"role": "tool",
|
||||
"tool_call_id": part["tool_use_id"],
|
||||
"content": part["content"] or "(no output)"
|
||||
})
|
||||
# Note: Anthropic user messages can also contain text+image,
|
||||
# but v0-v4 agents don't use that yet.
|
||||
|
||||
elif role == "assistant":
|
||||
if isinstance(content, str):
|
||||
# Simple text message
|
||||
openai_messages.append({"role": "assistant", "content": content})
|
||||
elif isinstance(content, list):
|
||||
# Tool calls (Assistant role)
|
||||
# Anthropic splits thought (text) and tool_use into blocks
|
||||
# OpenAI puts thought in 'content' and tools in 'tool_calls'
|
||||
text_parts = []
|
||||
tool_calls = []
|
||||
|
||||
for part in content:
|
||||
# Handle both dicts and objects (ContentBlock)
|
||||
if isinstance(part, dict):
|
||||
part_type = part.get("type")
|
||||
part_text = part.get("text")
|
||||
part_id = part.get("id")
|
||||
part_name = part.get("name")
|
||||
part_input = part.get("input")
|
||||
else:
|
||||
part_type = getattr(part, "type", None)
|
||||
part_text = getattr(part, "text", None)
|
||||
part_id = getattr(part, "id", None)
|
||||
part_name = getattr(part, "name", None)
|
||||
part_input = getattr(part, "input", None)
|
||||
|
||||
if part_type == "text":
|
||||
text_parts.append(part_text)
|
||||
elif part_type == "tool_use":
|
||||
tool_calls.append({
|
||||
"id": part_id,
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": part_name,
|
||||
"arguments": json.dumps(part_input)
|
||||
}
|
||||
})
|
||||
|
||||
assistant_msg = {"role": "assistant"}
|
||||
if text_parts:
|
||||
assistant_msg["content"] = "\n".join(text_parts)
|
||||
if tool_calls:
|
||||
assistant_msg["tool_calls"] = tool_calls
|
||||
|
||||
openai_messages.append(assistant_msg)
|
||||
|
||||
# 2. Convert Tools (Anthropic -> OpenAI)
|
||||
openai_tools = []
|
||||
for tool in tools:
|
||||
openai_tools.append({
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": tool["name"],
|
||||
"description": tool["description"],
|
||||
"parameters": tool["input_schema"]
|
||||
}
|
||||
})
|
||||
|
||||
# 3. Call OpenAI API
|
||||
# Note: Gemini/OpenAI handle max_tokens differently, but usually support the param
|
||||
response = self.client.chat.completions.create(
|
||||
model=model,
|
||||
messages=openai_messages,
|
||||
tools=openai_tools if openai_tools else None,
|
||||
max_tokens=max_tokens
|
||||
)
|
||||
|
||||
# 4. Convert Response (OpenAI -> Anthropic)
|
||||
message = response.choices[0].message
|
||||
content_blocks = []
|
||||
|
||||
# Extract text content
|
||||
if message.content:
|
||||
content_blocks.append(ContentBlock("text", text=message.content))
|
||||
|
||||
# Extract tool calls
|
||||
if message.tool_calls:
|
||||
for tool_call in message.tool_calls:
|
||||
content_blocks.append(ContentBlock(
|
||||
"tool_use",
|
||||
id=tool_call.id,
|
||||
name=tool_call.function.name,
|
||||
input=json.loads(tool_call.function.arguments)
|
||||
))
|
||||
|
||||
# Map stop reasons: OpenAI "stop"/"tool_calls" -> Anthropic "end_turn"/"tool_use"
|
||||
# OpenAI: stop, length, content_filter, tool_calls
|
||||
finish_reason = response.choices[0].finish_reason
|
||||
if finish_reason == "tool_calls":
|
||||
stop_reason = "tool_use"
|
||||
elif finish_reason == "stop":
|
||||
stop_reason = "end_turn"
|
||||
else:
|
||||
stop_reason = finish_reason # Fallback
|
||||
|
||||
return ResponseWrapper(content_blocks, stop_reason)
|
||||
|
||||
# =============================================================================
|
||||
# Factory Functions
|
||||
# =============================================================================
|
||||
|
||||
def get_provider():
|
||||
"""Get the current AI provider from environment variable."""
|
||||
return os.getenv("AI_PROVIDER", "anthropic").lower()
|
||||
|
||||
def get_client():
|
||||
"""
|
||||
Return a client that conforms to the Anthropic interface.
|
||||
|
||||
If AI_PROVIDER is 'anthropic', returns the native Anthropic client.
|
||||
Otherwise, returns an OpenAIAdapter wrapping an OpenAI-compatible client.
|
||||
"""
|
||||
provider = get_provider()
|
||||
|
||||
if provider == "anthropic":
|
||||
from anthropic import Anthropic
|
||||
base_url = os.getenv("ANTHROPIC_BASE_URL")
|
||||
# Return native client - guarantees 100% behavior compatibility
|
||||
return Anthropic(
|
||||
api_key=os.getenv("ANTHROPIC_API_KEY"),
|
||||
base_url=base_url
|
||||
)
|
||||
|
||||
else:
|
||||
# For OpenAI/Gemini, we wrap the client to mimic Anthropic
|
||||
try:
|
||||
from openai import OpenAI
|
||||
except ImportError:
|
||||
raise ImportError("Please install openai: pip install openai")
|
||||
|
||||
if provider == "openai":
|
||||
api_key = os.getenv("OPENAI_API_KEY")
|
||||
base_url = os.getenv("OPENAI_BASE_URL", "https://api.openai.com/v1")
|
||||
elif provider == "gemini":
|
||||
api_key = os.getenv("GEMINI_API_KEY")
|
||||
# Gemini OpenAI-compatible endpoint
|
||||
base_url = os.getenv("GEMINI_BASE_URL", "https://generativelanguage.googleapis.com/v1beta/openai/")
|
||||
else:
|
||||
# Generic OpenAI-compatible provider
|
||||
api_key = os.getenv(f"{provider.upper()}_API_KEY")
|
||||
base_url = os.getenv(f"{provider.upper()}_BASE_URL")
|
||||
|
||||
if not api_key:
|
||||
raise ValueError(f"API Key for {provider} is missing. Please check your .env file.")
|
||||
|
||||
raw_client = OpenAI(api_key=api_key, base_url=base_url)
|
||||
return OpenAIAdapter(raw_client)
|
||||
|
||||
def get_model():
|
||||
"""Return model name from environment variable."""
|
||||
model = os.getenv("MODEL_NAME")
|
||||
if not model:
|
||||
raise ValueError("MODEL_NAME environment variable is missing. Please set it in your .env file.")
|
||||
return model
|
||||
@ -1,2 +1,5 @@
|
||||
anthropic>=0.25.0
|
||||
openai>=1.0.0
|
||||
python-dotenv>=1.0.0
|
||||
pygame==2.5.2
|
||||
numpy==1.24.3
|
||||
@ -47,21 +47,14 @@ Usage:
|
||||
python v0_bash_agent.py "explore src/ and summarize"
|
||||
"""
|
||||
|
||||
from anthropic import Anthropic
|
||||
from dotenv import load_dotenv
|
||||
from provider_utils import get_client, get_model
|
||||
import subprocess
|
||||
import sys
|
||||
import os
|
||||
|
||||
# Load environment variables from .env file
|
||||
load_dotenv()
|
||||
|
||||
# Initialize API client with credentials from environment
|
||||
client = Anthropic(
|
||||
api_key=os.getenv("ANTHROPIC_API_KEY"),
|
||||
base_url=os.getenv("ANTHROPIC_BASE_URL")
|
||||
)
|
||||
MODEL = os.getenv("MODEL_NAME", "claude-sonnet-4-20250514")
|
||||
# Initialize API client and model using provider utilities
|
||||
client = get_client()
|
||||
MODEL = get_model()
|
||||
|
||||
# The ONE tool that does everything
|
||||
# Notice how the description teaches the model common patterns AND how to spawn subagents
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
#!/usr/bin/env python
|
||||
"""v0_bash_agent_mini.py - Mini Claude Code (Compact)"""
|
||||
from anthropic import Anthropic; from dotenv import load_dotenv; import subprocess as sp, sys, os
|
||||
load_dotenv(); C = Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY"), base_url=os.getenv("ANTHROPIC_BASE_URL")); M = os.getenv("MODEL_NAME", "claude-sonnet-4-20250514")
|
||||
from provider_utils import get_client, get_model; import subprocess as sp, sys, os
|
||||
C = get_client(); M = get_model()
|
||||
T = [{"name":"bash","description":"Shell cmd. Read:cat/grep/find/rg/ls. Write:echo>/sed. Subagent(for complex subtask): python v0_bash_agent_mini.py 'task'","input_schema":{"type":"object","properties":{"command":{"type":"string"}},"required":["command"]}}]
|
||||
S = f"CLI agent at {os.getcwd()}. Use bash to solve problems. Spawn subagent for complex subtasks: python v0_bash_agent_mini.py 'task'. Subagent isolates context and returns summary. Be concise."
|
||||
|
||||
|
||||
@ -56,23 +56,20 @@ from dotenv import load_dotenv
|
||||
# Load configuration from .env file
|
||||
load_dotenv()
|
||||
|
||||
# Import unified client provider
|
||||
try:
|
||||
from anthropic import Anthropic
|
||||
from provider_utils import get_client, get_model
|
||||
except ImportError:
|
||||
sys.exit("Please install: pip install anthropic python-dotenv")
|
||||
sys.exit("Error: provider_utils.py not found. Please ensure you are in the project root.")
|
||||
|
||||
|
||||
# =============================================================================
|
||||
# Configuration
|
||||
# =============================================================================
|
||||
|
||||
API_KEY = os.getenv("ANTHROPIC_API_KEY")
|
||||
BASE_URL = os.getenv("ANTHROPIC_BASE_URL")
|
||||
MODEL = os.getenv("MODEL_NAME", "claude-sonnet-4-20250514")
|
||||
WORKDIR = Path.cwd()
|
||||
|
||||
# Initialize client - handles both direct Anthropic and compatible APIs
|
||||
client = Anthropic(api_key=API_KEY, base_url=BASE_URL) if BASE_URL else Anthropic(api_key=API_KEY)
|
||||
MODEL = get_model()
|
||||
client = get_client()
|
||||
|
||||
|
||||
# =============================================================================
|
||||
|
||||
@ -66,21 +66,19 @@ from dotenv import load_dotenv
|
||||
load_dotenv()
|
||||
|
||||
try:
|
||||
from anthropic import Anthropic
|
||||
from provider_utils import get_client, get_model
|
||||
except ImportError:
|
||||
sys.exit("Please install: pip install anthropic python-dotenv")
|
||||
sys.exit("Error: provider_utils.py not found. Please ensure you are in the project root.")
|
||||
|
||||
|
||||
# =============================================================================
|
||||
# Configuration
|
||||
# =============================================================================
|
||||
|
||||
API_KEY = os.getenv("ANTHROPIC_API_KEY")
|
||||
BASE_URL = os.getenv("ANTHROPIC_BASE_URL")
|
||||
MODEL = os.getenv("MODEL_NAME", "claude-sonnet-4-20250514")
|
||||
WORKDIR = Path.cwd()
|
||||
|
||||
client = Anthropic(api_key=API_KEY, base_url=BASE_URL) if BASE_URL else Anthropic(api_key=API_KEY)
|
||||
client = get_client()
|
||||
MODEL = get_model()
|
||||
|
||||
|
||||
# =============================================================================
|
||||
|
||||
@ -84,21 +84,19 @@ from dotenv import load_dotenv
|
||||
load_dotenv()
|
||||
|
||||
try:
|
||||
from anthropic import Anthropic
|
||||
from provider_utils import get_client, get_model
|
||||
except ImportError:
|
||||
sys.exit("Please install: pip install anthropic python-dotenv")
|
||||
sys.exit("Error: provider_utils.py not found. Please ensure you are in the project root.")
|
||||
|
||||
|
||||
# =============================================================================
|
||||
# Configuration
|
||||
# =============================================================================
|
||||
|
||||
API_KEY = os.getenv("ANTHROPIC_API_KEY")
|
||||
BASE_URL = os.getenv("ANTHROPIC_BASE_URL")
|
||||
MODEL = os.getenv("MODEL_NAME", "claude-sonnet-4-20250514")
|
||||
WORKDIR = Path.cwd()
|
||||
|
||||
client = Anthropic(api_key=API_KEY, base_url=BASE_URL) if BASE_URL else Anthropic(api_key=API_KEY)
|
||||
client = get_client()
|
||||
MODEL = get_model()
|
||||
|
||||
|
||||
# =============================================================================
|
||||
|
||||
@ -89,22 +89,20 @@ from dotenv import load_dotenv
|
||||
load_dotenv()
|
||||
|
||||
try:
|
||||
from anthropic import Anthropic
|
||||
from provider_utils import get_client, get_model
|
||||
except ImportError:
|
||||
sys.exit("Please install: pip install anthropic python-dotenv")
|
||||
sys.exit("Error: provider_utils.py not found. Please ensure you are in the project root.")
|
||||
|
||||
|
||||
# =============================================================================
|
||||
# Configuration
|
||||
# =============================================================================
|
||||
|
||||
API_KEY = os.getenv("ANTHROPIC_API_KEY")
|
||||
BASE_URL = os.getenv("ANTHROPIC_BASE_URL")
|
||||
MODEL = os.getenv("MODEL_NAME", "claude-sonnet-4-20250514")
|
||||
WORKDIR = Path.cwd()
|
||||
SKILLS_DIR = WORKDIR / "skills"
|
||||
|
||||
client = Anthropic(api_key=API_KEY, base_url=BASE_URL) if BASE_URL else Anthropic(api_key=API_KEY)
|
||||
client = get_client()
|
||||
MODEL = get_model()
|
||||
|
||||
|
||||
# =============================================================================
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user