analysis_claude_code/v1_basic_agent.py
CrazyBoyM 120cf7ac99 refactor: remove multi-provider support, use Anthropic SDK directly
- Remove provider_utils.py (241 lines of adapter code)
- Simplify all agent files to use Anthropic SDK directly
- Update model to claude-sonnet-4-5-20250929
- Add python-dotenv with override=True (.env takes priority over env vars)
- Simplify .env.example to only require ANTHROPIC_API_KEY

This keeps the codebase focused on teaching agent concepts
rather than API compatibility layers. Users who need other
providers can use tools like litellm or one-api.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-24 23:33:32 +08:00

414 lines
13 KiB
Python

#!/usr/bin/env python3
"""
v1_basic_agent.py - Mini Claude Code: Model as Agent (~200 lines)
Core Philosophy: "The Model IS the Agent"
=========================================
The secret of Claude Code, Cursor Agent, Codex CLI? There is no secret.
Strip away the CLI polish, progress bars, permission systems. What remains
is surprisingly simple: a LOOP that lets the model call tools until done.
Traditional Assistant:
User -> Model -> Text Response
Agent System:
User -> Model -> [Tool -> Result]* -> Response
^________|
The asterisk (*) matters! The model calls tools REPEATEDLY until it decides
the task is complete. This transforms a chatbot into an autonomous agent.
KEY INSIGHT: The model is the decision-maker. Code just provides tools and
runs the loop. The model decides:
- Which tools to call
- In what order
- When to stop
The Four Essential Tools:
------------------------
Claude Code has ~20 tools. But these 4 cover 90% of use cases:
| Tool | Purpose | Example |
|------------|----------------------|----------------------------|
| bash | Run any command | npm install, git status |
| read_file | Read file contents | View src/index.ts |
| write_file | Create/overwrite | Create README.md |
| edit_file | Surgical changes | Replace a function |
With just these 4 tools, the model can:
- Explore codebases (bash: find, grep, ls)
- Understand code (read_file)
- Make changes (write_file, edit_file)
- Run anything (bash: python, npm, make)
Usage:
python v1_basic_agent.py
"""
import os
import subprocess
import sys
from pathlib import Path
from anthropic import Anthropic
from dotenv import load_dotenv
load_dotenv(override=True)
# =============================================================================
# Configuration
# =============================================================================
WORKDIR = Path.cwd()
MODEL = "claude-sonnet-4-5-20250929"
client = Anthropic()
# =============================================================================
# System Prompt - The only "configuration" the model needs
# =============================================================================
SYSTEM = f"""You are a coding agent at {WORKDIR}.
Loop: think briefly -> use tools -> report results.
Rules:
- Prefer tools over prose. Act, don't just explain.
- Never invent file paths. Use bash ls/find first if unsure.
- Make minimal changes. Don't over-engineer.
- After finishing, summarize what changed."""
# =============================================================================
# Tool Definitions - 4 tools cover 90% of coding tasks
# =============================================================================
TOOLS = [
# Tool 1: Bash - The gateway to everything
# Can run any command: git, npm, python, curl, etc.
{
"name": "bash",
"description": "Run a shell command. Use for: ls, find, grep, git, npm, python, etc.",
"input_schema": {
"type": "object",
"properties": {
"command": {
"type": "string",
"description": "The shell command to execute"
}
},
"required": ["command"],
},
},
# Tool 2: Read File - For understanding existing code
# Returns file content with optional line limit for large files
{
"name": "read_file",
"description": "Read file contents. Returns UTF-8 text.",
"input_schema": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "Relative path to the file"
},
"limit": {
"type": "integer",
"description": "Max lines to read (default: all)"
},
},
"required": ["path"],
},
},
# Tool 3: Write File - For creating new files or complete rewrites
# Creates parent directories automatically
{
"name": "write_file",
"description": "Write content to a file. Creates parent directories if needed.",
"input_schema": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "Relative path for the file"
},
"content": {
"type": "string",
"description": "Content to write"
},
},
"required": ["path", "content"],
},
},
# Tool 4: Edit File - For surgical changes to existing code
# Uses exact string matching for precise edits
{
"name": "edit_file",
"description": "Replace exact text in a file. Use for surgical edits.",
"input_schema": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "Relative path to the file"
},
"old_text": {
"type": "string",
"description": "Exact text to find (must match precisely)"
},
"new_text": {
"type": "string",
"description": "Replacement text"
},
},
"required": ["path", "old_text", "new_text"],
},
},
]
# =============================================================================
# Tool Implementations
# =============================================================================
def safe_path(p: str) -> Path:
"""
Ensure path stays within workspace (security measure).
Prevents the model from accessing files outside the project directory.
Resolves relative paths and checks they don't escape via '../'.
"""
path = (WORKDIR / p).resolve()
if not path.is_relative_to(WORKDIR):
raise ValueError(f"Path escapes workspace: {p}")
return path
def run_bash(command: str) -> str:
"""
Execute shell command with safety checks.
Security: Blocks obviously dangerous commands.
Timeout: 60 seconds to prevent hanging.
Output: Truncated to 50KB to prevent context overflow.
"""
# Basic safety - block dangerous patterns
dangerous = ["rm -rf /", "sudo", "shutdown", "reboot", "> /dev/"]
if any(d in command for d in dangerous):
return "Error: Dangerous command blocked"
try:
result = subprocess.run(
command,
shell=True,
cwd=WORKDIR,
capture_output=True,
text=True,
timeout=60
)
output = (result.stdout + result.stderr).strip()
return output[:50000] if output else "(no output)"
except subprocess.TimeoutExpired:
return "Error: Command timed out (60s)"
except Exception as e:
return f"Error: {e}"
def run_read(path: str, limit: int = None) -> str:
"""
Read file contents with optional line limit.
For large files, use limit to read just the first N lines.
Output truncated to 50KB to prevent context overflow.
"""
try:
text = safe_path(path).read_text()
lines = text.splitlines()
if limit and limit < len(lines):
lines = lines[:limit]
lines.append(f"... ({len(text.splitlines()) - limit} more lines)")
return "\n".join(lines)[:50000]
except Exception as e:
return f"Error: {e}"
def run_write(path: str, content: str) -> str:
"""
Write content to file, creating parent directories if needed.
This is for complete file creation/overwrite.
For partial edits, use edit_file instead.
"""
try:
fp = safe_path(path)
fp.parent.mkdir(parents=True, exist_ok=True)
fp.write_text(content)
return f"Wrote {len(content)} bytes to {path}"
except Exception as e:
return f"Error: {e}"
def run_edit(path: str, old_text: str, new_text: str) -> str:
"""
Replace exact text in a file (surgical edit).
Uses exact string matching - the old_text must appear verbatim.
Only replaces the first occurrence to prevent accidental mass changes.
"""
try:
fp = safe_path(path)
content = fp.read_text()
if old_text not in content:
return f"Error: Text not found in {path}"
# Replace only first occurrence for safety
new_content = content.replace(old_text, new_text, 1)
fp.write_text(new_content)
return f"Edited {path}"
except Exception as e:
return f"Error: {e}"
def execute_tool(name: str, args: dict) -> str:
"""
Dispatch tool call to the appropriate implementation.
This is the bridge between the model's tool calls and actual execution.
Each tool returns a string result that goes back to the model.
"""
if name == "bash":
return run_bash(args["command"])
if name == "read_file":
return run_read(args["path"], args.get("limit"))
if name == "write_file":
return run_write(args["path"], args["content"])
if name == "edit_file":
return run_edit(args["path"], args["old_text"], args["new_text"])
return f"Unknown tool: {name}"
# =============================================================================
# The Agent Loop - This is the CORE of everything
# =============================================================================
def agent_loop(messages: list) -> list:
"""
The complete agent in one function.
This is the pattern that ALL coding agents share:
while True:
response = model(messages, tools)
if no tool calls: return
execute tools, append results, continue
The model controls the loop:
- Keeps calling tools until stop_reason != "tool_use"
- Results become context (fed back as "user" messages)
- Memory is automatic (messages list accumulates history)
Why this works:
1. Model decides which tools, in what order, when to stop
2. Tool results provide feedback for next decision
3. Conversation history maintains context across turns
"""
while True:
# Step 1: Call the model
response = client.messages.create(
model=MODEL,
system=SYSTEM,
messages=messages,
tools=TOOLS,
max_tokens=8000,
)
# Step 2: Collect any tool calls and print text output
tool_calls = []
for block in response.content:
if hasattr(block, "text"):
print(block.text)
if block.type == "tool_use":
tool_calls.append(block)
# Step 3: If no tool calls, task is complete
if response.stop_reason != "tool_use":
messages.append({"role": "assistant", "content": response.content})
return messages
# Step 4: Execute each tool and collect results
results = []
for tc in tool_calls:
# Display what's being executed
print(f"\n> {tc.name}: {tc.input}")
# Execute and show result preview
output = execute_tool(tc.name, tc.input)
preview = output[:200] + "..." if len(output) > 200 else output
print(f" {preview}")
# Collect result for the model
results.append({
"type": "tool_result",
"tool_use_id": tc.id,
"content": output,
})
# Step 5: Append to conversation and continue
# Note: We append assistant's response, then user's tool results
# This maintains the alternating user/assistant pattern
messages.append({"role": "assistant", "content": response.content})
messages.append({"role": "user", "content": results})
# =============================================================================
# Main REPL
# =============================================================================
def main():
"""
Simple Read-Eval-Print Loop for interactive use.
The history list maintains conversation context across turns,
allowing multi-turn conversations with memory.
"""
print(f"Mini Claude Code v1 - {WORKDIR}")
print("Type 'exit' to quit.\n")
history = []
while True:
try:
user_input = input("You: ").strip()
except (EOFError, KeyboardInterrupt):
break
if not user_input or user_input.lower() in ("exit", "quit", "q"):
break
# Add user message to history
history.append({"role": "user", "content": user_input})
try:
# Run the agent loop
agent_loop(history)
except Exception as e:
print(f"Error: {e}")
print() # Blank line between turns
if __name__ == "__main__":
main()