CrazyBoyM 85f44c358a Complete rewrite: original educational content only
- Remove all reverse-engineered Claude Code source code
- Replace with 100% original educational content from mini-claude-code
- Add clear disclaimer: independent project, not affiliated with Anthropic
- 5 progressive agent implementations (v0-v4, ~1100 lines total)
- Include agent-builder skill for teaching agent construction
- Bilingual documentation (EN + ZH)

This repository now focuses purely on teaching how modern AI agents work
through original, from-scratch implementations.

Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-12-31 07:01:42 +08:00

244 lines
7.6 KiB
Python

"""
Subagent Pattern - How to implement Task tool for context isolation.
The key insight: spawn child agents with ISOLATED context to prevent
"context pollution" where exploration details fill up the main conversation.
"""
import time
import sys
# Assuming client, MODEL, execute_tool are defined elsewhere
# =============================================================================
# AGENT TYPE REGISTRY
# =============================================================================
AGENT_TYPES = {
# Explore: Read-only, for searching and analyzing
"explore": {
"description": "Read-only agent for exploring code, finding files, searching",
"tools": ["bash", "read_file"], # No write access!
"prompt": "You are an exploration agent. Search and analyze, but NEVER modify files. Return a concise summary of what you found.",
},
# Code: Full-powered, for implementation
"code": {
"description": "Full agent for implementing features and fixing bugs",
"tools": "*", # All tools
"prompt": "You are a coding agent. Implement the requested changes efficiently. Return a summary of what you changed.",
},
# Plan: Read-only, for design work
"plan": {
"description": "Planning agent for designing implementation strategies",
"tools": ["bash", "read_file"], # Read-only
"prompt": "You are a planning agent. Analyze the codebase and output a numbered implementation plan. Do NOT make any changes.",
},
# Add your own types here...
# "test": {
# "description": "Testing agent for running and analyzing tests",
# "tools": ["bash", "read_file"],
# "prompt": "Run tests and report results. Don't modify code.",
# },
}
def get_agent_descriptions() -> str:
"""Generate descriptions for Task tool schema."""
return "\n".join(
f"- {name}: {cfg['description']}"
for name, cfg in AGENT_TYPES.items()
)
def get_tools_for_agent(agent_type: str, base_tools: list) -> list:
"""
Filter tools based on agent type.
'*' means all base tools.
Otherwise, whitelist specific tool names.
Note: Subagents don't get Task tool to prevent infinite recursion.
"""
allowed = AGENT_TYPES.get(agent_type, {}).get("tools", "*")
if allowed == "*":
return base_tools # All base tools, but NOT Task
return [t for t in base_tools if t["name"] in allowed]
# =============================================================================
# TASK TOOL DEFINITION
# =============================================================================
TASK_TOOL = {
"name": "Task",
"description": f"""Spawn a subagent for a focused subtask.
Subagents run in ISOLATED context - they don't see parent's history.
Use this to keep the main conversation clean.
Agent types:
{get_agent_descriptions()}
Example uses:
- Task(explore): "Find all files using the auth module"
- Task(plan): "Design a migration strategy for the database"
- Task(code): "Implement the user registration form"
""",
"input_schema": {
"type": "object",
"properties": {
"description": {
"type": "string",
"description": "Short task name (3-5 words) for progress display"
},
"prompt": {
"type": "string",
"description": "Detailed instructions for the subagent"
},
"agent_type": {
"type": "string",
"enum": list(AGENT_TYPES.keys()),
"description": "Type of agent to spawn"
},
},
"required": ["description", "prompt", "agent_type"],
},
}
# =============================================================================
# SUBAGENT EXECUTION
# =============================================================================
def run_task(description: str, prompt: str, agent_type: str,
client, model: str, workdir, base_tools: list, execute_tool) -> str:
"""
Execute a subagent task with isolated context.
Key concepts:
1. ISOLATED HISTORY - subagent starts fresh, no parent context
2. FILTERED TOOLS - based on agent type permissions
3. AGENT-SPECIFIC PROMPT - specialized behavior
4. RETURNS SUMMARY ONLY - parent sees just the final result
Args:
description: Short name for progress display
prompt: Detailed instructions for subagent
agent_type: Key from AGENT_TYPES
client: Anthropic client
model: Model to use
workdir: Working directory
base_tools: List of tool definitions
execute_tool: Function to execute tools
Returns:
Final text output from subagent
"""
if agent_type not in AGENT_TYPES:
return f"Error: Unknown agent type '{agent_type}'"
config = AGENT_TYPES[agent_type]
# Agent-specific system prompt
sub_system = f"""You are a {agent_type} subagent at {workdir}.
{config["prompt"]}
Complete the task and return a clear, concise summary."""
# Filtered tools for this agent type
sub_tools = get_tools_for_agent(agent_type, base_tools)
# KEY: ISOLATED message history!
# The subagent starts fresh, doesn't see parent's conversation
sub_messages = [{"role": "user", "content": prompt}]
# Progress display
print(f" [{agent_type}] {description}")
start = time.time()
tool_count = 0
# Run the same agent loop (but silently)
while True:
response = client.messages.create(
model=model,
system=sub_system,
messages=sub_messages,
tools=sub_tools,
max_tokens=8000,
)
# Check if done
if response.stop_reason != "tool_use":
break
# Execute tools
tool_calls = [b for b in response.content if b.type == "tool_use"]
results = []
for tc in tool_calls:
tool_count += 1
output = execute_tool(tc.name, tc.input)
results.append({
"type": "tool_result",
"tool_use_id": tc.id,
"content": output
})
# Update progress (in-place on same line)
elapsed = time.time() - start
sys.stdout.write(
f"\r [{agent_type}] {description} ... {tool_count} tools, {elapsed:.1f}s"
)
sys.stdout.flush()
sub_messages.append({"role": "assistant", "content": response.content})
sub_messages.append({"role": "user", "content": results})
# Final progress update
elapsed = time.time() - start
sys.stdout.write(
f"\r [{agent_type}] {description} - done ({tool_count} tools, {elapsed:.1f}s)\n"
)
# Extract and return ONLY the final text
# This is what the parent agent sees - a clean summary
for block in response.content:
if hasattr(block, "text"):
return block.text
return "(subagent returned no text)"
# =============================================================================
# USAGE EXAMPLE
# =============================================================================
"""
# In your main agent's execute_tool function:
def execute_tool(name: str, args: dict) -> str:
if name == "Task":
return run_task(
description=args["description"],
prompt=args["prompt"],
agent_type=args["agent_type"],
client=client,
model=MODEL,
workdir=WORKDIR,
base_tools=BASE_TOOLS,
execute_tool=execute_tool # Pass self for recursion
)
# ... other tools ...
# In your TOOLS list:
TOOLS = BASE_TOOLS + [TASK_TOOL]
"""