mirror of
https://github.com/shareAI-lab/analysis_claude_code.git
synced 2026-02-04 13:16:37 +08:00
242 lines
9.4 KiB
Python
242 lines
9.4 KiB
Python
"""
|
|
Provider utilities for multi-provider AI agent support.
|
|
|
|
This module provides a unified interface for multiple AI providers (Anthropic, OpenAI, Gemini),
|
|
allowing the existing agent code (v0-v4) to run unchanged.
|
|
|
|
It uses the Adapter Pattern to make OpenAI-compatible clients look exactly like
|
|
Anthropic clients to the consuming code.
|
|
"""
|
|
|
|
import os
|
|
import json
|
|
from typing import Any, Dict, List, Union, Optional
|
|
from dotenv import load_dotenv
|
|
|
|
# Load environment variables
|
|
load_dotenv()
|
|
|
|
# =============================================================================
|
|
# Data Structures (Mimic Anthropic SDK)
|
|
# =============================================================================
|
|
|
|
class ResponseWrapper:
|
|
"""Wrapper to make OpenAI responses look like Anthropic responses."""
|
|
def __init__(self, content, stop_reason):
|
|
self.content = content
|
|
self.stop_reason = stop_reason
|
|
|
|
class ContentBlock:
|
|
"""Wrapper to make content blocks look like Anthropic content blocks."""
|
|
def __init__(self, block_type, **kwargs):
|
|
self.type = block_type
|
|
for key, value in kwargs.items():
|
|
setattr(self, key, value)
|
|
|
|
def __repr__(self):
|
|
attrs = ", ".join(f"{k}={v!r}" for k, v in self.__dict__.items())
|
|
return f"ContentBlock({attrs})"
|
|
|
|
# =============================================================================
|
|
# Adapters
|
|
# =============================================================================
|
|
|
|
class OpenAIAdapter:
|
|
"""
|
|
Adapts the OpenAI client to look like an Anthropic client.
|
|
|
|
Key Magic:
|
|
self.messages = self
|
|
|
|
This allows the agent code to call:
|
|
client.messages.create(...)
|
|
|
|
which resolves to:
|
|
adapter.create(...)
|
|
"""
|
|
def __init__(self, openai_client):
|
|
self.client = openai_client
|
|
self.messages = self # Duck typing: act as the 'messages' resource
|
|
|
|
def create(self, model: str, system: str, messages: List[Dict], tools: List[Dict], max_tokens: int = 8000):
|
|
"""
|
|
The core translation layer.
|
|
Converts Anthropic inputs -> OpenAI inputs -> OpenAI API -> Anthropic outputs.
|
|
"""
|
|
# 1. Convert Messages (Anthropic -> OpenAI)
|
|
openai_messages = [{"role": "system", "content": system}]
|
|
|
|
for msg in messages:
|
|
role = msg["role"]
|
|
content = msg["content"]
|
|
|
|
if role == "user":
|
|
if isinstance(content, str):
|
|
# Simple text message
|
|
openai_messages.append({"role": "user", "content": content})
|
|
elif isinstance(content, list):
|
|
# Tool results (User role in Anthropic, Tool role in OpenAI)
|
|
for part in content:
|
|
if part.get("type") == "tool_result":
|
|
openai_messages.append({
|
|
"role": "tool",
|
|
"tool_call_id": part["tool_use_id"],
|
|
"content": part["content"] or "(no output)"
|
|
})
|
|
# Note: Anthropic user messages can also contain text+image,
|
|
# but v0-v4 agents don't use that yet.
|
|
|
|
elif role == "assistant":
|
|
if isinstance(content, str):
|
|
# Simple text message
|
|
openai_messages.append({"role": "assistant", "content": content})
|
|
elif isinstance(content, list):
|
|
# Tool calls (Assistant role)
|
|
# Anthropic splits thought (text) and tool_use into blocks
|
|
# OpenAI puts thought in 'content' and tools in 'tool_calls'
|
|
text_parts = []
|
|
tool_calls = []
|
|
|
|
for part in content:
|
|
# Handle both dicts and objects (ContentBlock)
|
|
if isinstance(part, dict):
|
|
part_type = part.get("type")
|
|
part_text = part.get("text")
|
|
part_id = part.get("id")
|
|
part_name = part.get("name")
|
|
part_input = part.get("input")
|
|
else:
|
|
part_type = getattr(part, "type", None)
|
|
part_text = getattr(part, "text", None)
|
|
part_id = getattr(part, "id", None)
|
|
part_name = getattr(part, "name", None)
|
|
part_input = getattr(part, "input", None)
|
|
|
|
if part_type == "text":
|
|
text_parts.append(part_text)
|
|
elif part_type == "tool_use":
|
|
tool_calls.append({
|
|
"id": part_id,
|
|
"type": "function",
|
|
"function": {
|
|
"name": part_name,
|
|
"arguments": json.dumps(part_input)
|
|
}
|
|
})
|
|
|
|
assistant_msg = {"role": "assistant"}
|
|
if text_parts:
|
|
assistant_msg["content"] = "\n".join(text_parts)
|
|
if tool_calls:
|
|
assistant_msg["tool_calls"] = tool_calls
|
|
|
|
openai_messages.append(assistant_msg)
|
|
|
|
# 2. Convert Tools (Anthropic -> OpenAI)
|
|
openai_tools = []
|
|
for tool in tools:
|
|
openai_tools.append({
|
|
"type": "function",
|
|
"function": {
|
|
"name": tool["name"],
|
|
"description": tool["description"],
|
|
"parameters": tool["input_schema"]
|
|
}
|
|
})
|
|
|
|
# 3. Call OpenAI API
|
|
# Note: Gemini/OpenAI handle max_tokens differently, but usually support the param
|
|
response = self.client.chat.completions.create(
|
|
model=model,
|
|
messages=openai_messages,
|
|
tools=openai_tools if openai_tools else None,
|
|
max_tokens=max_tokens
|
|
)
|
|
|
|
# 4. Convert Response (OpenAI -> Anthropic)
|
|
message = response.choices[0].message
|
|
content_blocks = []
|
|
|
|
# Extract text content
|
|
if message.content:
|
|
content_blocks.append(ContentBlock("text", text=message.content))
|
|
|
|
# Extract tool calls
|
|
if message.tool_calls:
|
|
for tool_call in message.tool_calls:
|
|
content_blocks.append(ContentBlock(
|
|
"tool_use",
|
|
id=tool_call.id,
|
|
name=tool_call.function.name,
|
|
input=json.loads(tool_call.function.arguments)
|
|
))
|
|
|
|
# Map stop reasons: OpenAI "stop"/"tool_calls" -> Anthropic "end_turn"/"tool_use"
|
|
# OpenAI: stop, length, content_filter, tool_calls
|
|
finish_reason = response.choices[0].finish_reason
|
|
if finish_reason == "tool_calls":
|
|
stop_reason = "tool_use"
|
|
elif finish_reason == "stop":
|
|
stop_reason = "end_turn"
|
|
else:
|
|
stop_reason = finish_reason # Fallback
|
|
|
|
return ResponseWrapper(content_blocks, stop_reason)
|
|
|
|
# =============================================================================
|
|
# Factory Functions
|
|
# =============================================================================
|
|
|
|
def get_provider():
|
|
"""Get the current AI provider from environment variable."""
|
|
return os.getenv("AI_PROVIDER", "anthropic").lower()
|
|
|
|
def get_client():
|
|
"""
|
|
Return a client that conforms to the Anthropic interface.
|
|
|
|
If AI_PROVIDER is 'anthropic', returns the native Anthropic client.
|
|
Otherwise, returns an OpenAIAdapter wrapping an OpenAI-compatible client.
|
|
"""
|
|
provider = get_provider()
|
|
|
|
if provider == "anthropic":
|
|
from anthropic import Anthropic
|
|
base_url = os.getenv("ANTHROPIC_BASE_URL")
|
|
# Return native client - guarantees 100% behavior compatibility
|
|
return Anthropic(
|
|
api_key=os.getenv("ANTHROPIC_API_KEY"),
|
|
base_url=base_url
|
|
)
|
|
|
|
else:
|
|
# For OpenAI/Gemini, we wrap the client to mimic Anthropic
|
|
try:
|
|
from openai import OpenAI
|
|
except ImportError:
|
|
raise ImportError("Please install openai: pip install openai")
|
|
|
|
if provider == "openai":
|
|
api_key = os.getenv("OPENAI_API_KEY")
|
|
base_url = os.getenv("OPENAI_BASE_URL", "https://api.openai.com/v1")
|
|
elif provider == "gemini":
|
|
api_key = os.getenv("GEMINI_API_KEY")
|
|
# Gemini OpenAI-compatible endpoint
|
|
base_url = os.getenv("GEMINI_BASE_URL", "https://generativelanguage.googleapis.com/v1beta/openai/")
|
|
else:
|
|
# Generic OpenAI-compatible provider
|
|
api_key = os.getenv(f"{provider.upper()}_API_KEY")
|
|
base_url = os.getenv(f"{provider.upper()}_BASE_URL")
|
|
|
|
if not api_key:
|
|
raise ValueError(f"API Key for {provider} is missing. Please check your .env file.")
|
|
|
|
raw_client = OpenAI(api_key=api_key, base_url=base_url)
|
|
return OpenAIAdapter(raw_client)
|
|
|
|
def get_model():
|
|
"""Return model name from environment variable."""
|
|
model = os.getenv("MODEL_NAME")
|
|
if not model:
|
|
raise ValueError("MODEL_NAME environment variable is missing. Please set it in your .env file.")
|
|
return model |