This fixes a couple of occurrences where the src and dst parameters to
ip4_route_src() were swapped. This was most likely due to confusion between
ip_route(src, dst) and ip4_route_src(dst, src)
This was found in a system where LWIP_IPV4_SRC_ROUTING is 0
The UDP case was an application socket bound to INADDR_ANY with
IP_MULTICAST_IF set. Transmits would result in calling ip4_route(dst) where
dst was pcb->local_addr (which was INADDR_ANY) instead of pcb->mcast_ip4.
This resulted in a routing failure
The ICMP issue was found through code analysis only
So far, the UDP core module implemented only IPv4 multicast support.
This patch extends the module with the features necessary for socket
layers on top to implement IPv6 multicast support as well:
o If a UDP PCB is bound to an IPv6 multicast address, a unicast source
address is selected and used to send the packet instead, as is
required (and was the case for IPv4 multicast already).
o Unlike IPv4's IP_MULTICAST_IF socket option, which takes a source
IPv4 address, the IPV6_MULTICAST_IF socket option (from RFC 3493)
takes an interface identifier to denote the interface to use for
outgoing multicast-destined packets. A new pair of UDP PCB API
calls, udp_[gs]et_multicast_netif_index(), are added to support
this. The new definition "NETIF_NO_INDEX" may be used to indicate
that lwIP should pick an interface instead.
IPv4 socket implementations may now also choose to map the given
source address to an interface index immediately and use the new
facility instead of the old udp_[gs]et_multicast_netif_addr() one.
A side effect of limiting the old facility to IPv4 is that for dual-
stack configurations with multicast support, the UDP PCB size is
reduced by (up to) 16 bytes.
o For configurations that enable loopback interface support, the IPv6
code now also supports multicast loopback (IPV6_MULTICAST_LOOP).
o The LWIP_MULTICAST_TX_OPTIONS opt.h setting now covers both IPv4
and IPv6, and as such is no longer strictly linked to IGMP. It is
therefore placed in its own lwIP options subgroup in opt.h.
The IPV6_MULTICAST_HOPS socket option can already be implemented using
the existing IP_MULTICAST_TTL support, and thus requires no additional
changes. Overall, this patch should not break any existing code.
Previously, on netifs with unrestricted MTUs (typically loopback
interfaces), it was possible to give a packet to the UDP/RAW API
calls that is so large that when prepending headers, the pbuf's
tot_len field would overflow. This could easily result in
undesirable behavior at lower layers, e.g. a crash when copying
the packet for later delivery.
This patch models such overflows as memory allocation errors, thus
resulting in clean failures. Checks have to be added in multiple
places to cover (hopefully) all cases.
This patch adds full support for IPv6 address scopes, thereby aiming
to be compliant with IPv6 standards in general and RFC 4007 in
particular. The high-level summary is that link-local addresses are
now meaningful only in the context of their own link, guaranteeing
full isolation between links (and their addresses) in this respect.
This isolation even allows multiple interfaces to have the same
link-local addresses locally assigned.
The implementation achieves this by extending the lwIP IPv6 address
structure with a zone field that, for addresses that have a scope,
carries the scope's zone in which that address has meaning. The zone
maps to one or more interfaces. By default, lwIP uses a policy that
provides a 1:1 mapping between links and interfaces, and considers
all other addresses unscoped, corresponding to the default policy
sketched in RFC 4007 Sec. 6. The implementation allows for replacing
the default policy with a custom policy if desired, though.
The lwIP core implementation has been changed to provide somewhat of
a balance between correctness and efficiency on on side, and backward
compatibility on the other. In particular, while the application would
ideally always provide a zone for a scoped address, putting this in as
a requirement would likely break many applications. Instead, the API
accepts both "properly zoned" IPv6 addresses and addresses that, while
scoped, "lack" a zone. lwIP will try to add a zone as soon as possible
for efficiency reasons, in particular from TCP/UDP/RAW PCB bind and
connect calls, but this may fail, and sendto calls may bypass that
anyway. Ultimately, a zone is always added when an IP packet is sent
when needed, because the link-layer lwIP code (and ND6 in particualar)
requires that all addresses be properly zoned for correctness: for
example, to provide isolation between links in the ND6 destination
cache. All this applies to packet output only, because on packet
input, all scoped addresses will be given a zone automatically.
It is also worth remarking that on output, no attempt is made to stop
outgoing packets with addresses for a zone not matching the outgoing
interface. However, unless the application explicitly provides
addresses that will result in such zone violations, the core API
implementation (and the IPv6 routing algorithm in particular) itself
will never take decisions that result in zone violations itself.
This patch adds a new header file, ip6_zone.h, which contains comments
that explain several implementation aspects in a bit more detail.
For now, it is possible to disable scope support by changing the new
LWIP_IPV6_SCOPES configuration option. For users of the core API, it
is important to note that scoped addresses that are locally assigned
to a netif must always have a zone set; the standard netif address
assignment functions always do this on behalf of the caller, though.
Also, core API users will want to enable LWIP_IPV6_SCOPES_DEBUG at
least initially when upgrading, to ensure that all addresses are
properly initialized.
The tests were in to catch user errors, but they seem to get in the way of application programming :-)
The checks in *_send() remain active to catch when PCB source and destination address types do not match
Change lwIP UDP API to match socket behavior. Multicast traffic is now only received on a UDP PCB (and therefore on a UDP socket/netconn) when the PCB is bound to IP_ADDR_ANY.
bind() may change IP type when previous type is IPADDR_TYPE_ANY
connect() IP type must exactly match bind IP type
Use correct IPADDRx_ANY type when calling ip_route()
Let lwip use functions/macros prefixed by lwip_ internally to avoid naming clashes with external #includes.
Remove over-complicated #define handling in def.h
Make functions easier to override in cc.h. The following is sufficient now (no more LWIP_PLATFORM_BYTESWAP):
#define lwip_htons(x) <your_htons>
#define lwip_htonl(x) <your_htonl>
Sockets bound to a multicast address could not transmit multicast
packets because the pcb local address did not match the netif address
even if the outgoing netif was resolved correctly.
To correct the issue, pcbs with a multicast local address will use
the outgoing netif address as the source address in IPv4.