mirror of
https://git.savannah.nongnu.org/git/lwip.git
synced 2025-08-03 21:14:40 +08:00

Overrides patch #2679, as this must be solved inside ip_addr_isbroadcast(), inspired by BSD.
846 lines
29 KiB
C
846 lines
29 KiB
C
/**
|
|
* @file
|
|
* Address Resolution Protocol module for IP over Ethernet
|
|
*
|
|
* Functionally, ARP is divided into two parts. The first maps an IP address
|
|
* to a physical address when sending a packet, and the second part answers
|
|
* requests from other machines for our physical address.
|
|
*
|
|
* This implementation complies with RFC 826 (Ethernet ARP) and supports
|
|
* Gratuitious ARP from RFC3220 (IP Mobility Support for IPv4) section 4.6.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2001-2004 Swedish Institute of Computer Science.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
* are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
|
|
* SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
|
|
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
|
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
|
|
* OF SUCH DAMAGE.
|
|
*
|
|
* This file is part of the lwIP TCP/IP stack.
|
|
*
|
|
* Author: Adam Dunkels <adam@sics.se>
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* TODO:
|
|
* - pbufs should be sent from the queue once an ARP entry state
|
|
* goes from PENDING to STABLE.
|
|
* - Non-PENDING entries MUST NOT have queued packets.
|
|
*/
|
|
|
|
/*
|
|
* TODO:
|
|
*
|
|
RFC 3220 4.6 IP Mobility Support for IPv4 January 2002
|
|
|
|
- A Gratuitous ARP [45] is an ARP packet sent by a node in order
|
|
to spontaneously cause other nodes to update an entry in their
|
|
ARP cache. A gratuitous ARP MAY use either an ARP Request or
|
|
an ARP Reply packet. In either case, the ARP Sender Protocol
|
|
Address and ARP Target Protocol Address are both set to the IP
|
|
address of the cache entry to be updated, and the ARP Sender
|
|
Hardware Address is set to the link-layer address to which this
|
|
cache entry should be updated. When using an ARP Reply packet,
|
|
the Target Hardware Address is also set to the link-layer
|
|
address to which this cache entry should be updated (this field
|
|
is not used in an ARP Request packet).
|
|
|
|
In either case, for a gratuitous ARP, the ARP packet MUST be
|
|
transmitted as a local broadcast packet on the local link. As
|
|
specified in [36], any node receiving any ARP packet (Request
|
|
or Reply) MUST update its local ARP cache with the Sender
|
|
Protocol and Hardware Addresses in the ARP packet, if the
|
|
receiving node has an entry for that IP address already in its
|
|
ARP cache. This requirement in the ARP protocol applies even
|
|
for ARP Request packets, and for ARP Reply packets that do not
|
|
match any ARP Request transmitted by the receiving node [36].
|
|
*
|
|
My suggestion would be to send a ARP request for our newly obtained
|
|
address upon configuration of an Ethernet interface.
|
|
|
|
*/
|
|
|
|
#include "lwip/opt.h"
|
|
#include "lwip/inet.h"
|
|
#include "netif/etharp.h"
|
|
#include "lwip/ip.h"
|
|
#include "lwip/stats.h"
|
|
|
|
/* ARP needs to inform DHCP of any ARP replies? */
|
|
#if (LWIP_DHCP && DHCP_DOES_ARP_CHECK)
|
|
# include "lwip/dhcp.h"
|
|
#endif
|
|
|
|
/** the time an ARP entry stays valid after its last update, (120 * 10) seconds = 20 minutes. */
|
|
#define ARP_MAXAGE 120
|
|
/** the time an ARP entry stays pending after first request, (2 * 10) seconds = 20 seconds. */
|
|
#define ARP_MAXPENDING 2
|
|
|
|
#define HWTYPE_ETHERNET 1
|
|
|
|
/** ARP message types */
|
|
#define ARP_REQUEST 1
|
|
#define ARP_REPLY 2
|
|
|
|
#define ARPH_HWLEN(hdr) (ntohs((hdr)->_hwlen_protolen) >> 8)
|
|
#define ARPH_PROTOLEN(hdr) (ntohs((hdr)->_hwlen_protolen) & 0xff)
|
|
|
|
#define ARPH_HWLEN_SET(hdr, len) (hdr)->_hwlen_protolen = htons(ARPH_PROTOLEN(hdr) | ((len) << 8))
|
|
#define ARPH_PROTOLEN_SET(hdr, len) (hdr)->_hwlen_protolen = htons((len) | (ARPH_HWLEN(hdr) << 8))
|
|
|
|
enum etharp_state {
|
|
ETHARP_STATE_EMPTY,
|
|
ETHARP_STATE_PENDING,
|
|
ETHARP_STATE_STABLE
|
|
};
|
|
|
|
struct etharp_entry {
|
|
struct ip_addr ipaddr;
|
|
struct eth_addr ethaddr;
|
|
enum etharp_state state;
|
|
#if ARP_QUEUEING
|
|
/**
|
|
* Pointer to queue of pending outgoing packets on this ARP entry.
|
|
* Must be at most a single packet for now. */
|
|
struct pbuf *p;
|
|
#endif
|
|
u8_t ctime;
|
|
};
|
|
|
|
static const struct eth_addr ethbroadcast = {{0xff,0xff,0xff,0xff,0xff,0xff}};
|
|
static struct etharp_entry arp_table[ARP_TABLE_SIZE];
|
|
|
|
static s8_t find_arp_entry(void);
|
|
#define ARP_INSERT_FLAG 1
|
|
static struct pbuf *update_arp_entry(struct netif *netif, struct ip_addr *ipaddr, struct eth_addr *ethaddr, u8_t flags);
|
|
#if ARP_QUEUEING
|
|
static struct pbuf *etharp_enqueue(s8_t i, struct pbuf *q);
|
|
static u8_t etharp_dequeue(s8_t i);
|
|
#endif
|
|
/**
|
|
* Initializes ARP module.
|
|
*/
|
|
void
|
|
etharp_init(void)
|
|
{
|
|
s8_t i;
|
|
/* clear ARP entries */
|
|
for(i = 0; i < ARP_TABLE_SIZE; ++i) {
|
|
arp_table[i].state = ETHARP_STATE_EMPTY;
|
|
#if ARP_QUEUEING
|
|
arp_table[i].p = NULL;
|
|
#endif
|
|
arp_table[i].ctime = 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Clears expired entries in the ARP table.
|
|
*
|
|
* This function should be called every ETHARP_TMR_INTERVAL microseconds (10 seconds),
|
|
* in order to expire entries in the ARP table.
|
|
*/
|
|
void
|
|
etharp_tmr(void)
|
|
{
|
|
s8_t i;
|
|
|
|
LWIP_DEBUGF(ETHARP_DEBUG, ("etharp_timer\n"));
|
|
/* remove expired entries from the ARP table */
|
|
for (i = 0; i < ARP_TABLE_SIZE; ++i) {
|
|
arp_table[i].ctime++;
|
|
/* a resolved/stable entry? */
|
|
if ((arp_table[i].state == ETHARP_STATE_STABLE) &&
|
|
/* entry has become old? */
|
|
(arp_table[i].ctime >= ARP_MAXAGE)) {
|
|
LWIP_DEBUGF(ETHARP_DEBUG, ("etharp_timer: expired stable entry %u.\n", i));
|
|
goto empty;
|
|
/* an unresolved/pending entry? */
|
|
} else if ((arp_table[i].state == ETHARP_STATE_PENDING) &&
|
|
/* entry unresolved/pending for too long? */
|
|
(arp_table[i].ctime >= ARP_MAXPENDING)) {
|
|
LWIP_DEBUGF(ETHARP_DEBUG, ("etharp_timer: expired pending entry %u.\n", i));
|
|
empty:
|
|
/* empty old entry */
|
|
arp_table[i].state = ETHARP_STATE_EMPTY;
|
|
#if ARP_QUEUEING
|
|
/* and empty packet queue */
|
|
if (arp_table[i].p != NULL) {
|
|
/* remove any queued packet */
|
|
LWIP_DEBUGF(ETHARP_DEBUG, ("etharp_timer: freeing entry %u, packet queue %p.\n", i, (void *)(arp_table[i].p)));
|
|
pbuf_free(arp_table[i].p);
|
|
arp_table[i].p = NULL;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Return an empty ARP entry (possibly recycling the oldest stable entry).
|
|
*
|
|
* @return The ARP entry index that is available, ERR_MEM if no usable
|
|
* entry is found.
|
|
*/
|
|
static s8_t
|
|
find_arp_entry(void)
|
|
{
|
|
s8_t i, j;
|
|
u8_t maxtime = 0;
|
|
|
|
j = ARP_TABLE_SIZE;
|
|
/* search ARP table for an unused or old entry */
|
|
for (i = 0; i < ARP_TABLE_SIZE; ++i) {
|
|
/* empty entry? */
|
|
if (arp_table[i].state == ETHARP_STATE_EMPTY) {
|
|
LWIP_DEBUGF(ETHARP_DEBUG, ("find_arp_entry: returning empty entry %u\n", i));
|
|
return i;
|
|
/* stable entry? */
|
|
} else if (arp_table[i].state == ETHARP_STATE_STABLE) {
|
|
/* remember entry with oldest stable entry in j */
|
|
if (arp_table[i].ctime >= maxtime) maxtime = arp_table[j = i].ctime;
|
|
}
|
|
}
|
|
/* no empty entry found? */
|
|
if (i == ARP_TABLE_SIZE) {
|
|
LWIP_DEBUGF(ETHARP_DEBUG, ("find_arp_entry: found oldest stable entry %u\n", j));
|
|
/* fall-back to oldest stable */
|
|
i = j;
|
|
}
|
|
/* no available entry found? */
|
|
if (i == ARP_TABLE_SIZE) {
|
|
LWIP_DEBUGF(ETHARP_DEBUG, ("find_arp_entry: no replacable entry could be found\n"));
|
|
/* return failure */
|
|
return ERR_MEM;
|
|
}
|
|
|
|
/* clean up the recycled stable entry */
|
|
if (arp_table[i].state == ETHARP_STATE_STABLE) {
|
|
#if ARP_QUEUEING
|
|
/* free packets on queue */
|
|
etharp_dequeue(i);
|
|
#endif
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("find_arp_entry: recycling oldest stable entry %u\n", i));
|
|
arp_table[i].state = ETHARP_STATE_EMPTY;
|
|
arp_table[i].ctime = 0;
|
|
}
|
|
LWIP_DEBUGF(ETHARP_DEBUG, ("find_arp_entry: returning %u\n", i));
|
|
return i;
|
|
}
|
|
|
|
#if ARP_QUEUEING
|
|
/*
|
|
* Enqueues a pbuf (chain) on an ARP entry.
|
|
*
|
|
* Places the pbuf (chain) on the queue (if space allows). The
|
|
* caller may safely free the pbuf (chain) afterwards, as the
|
|
* pbufs will be referenced by the queue and copies are made of
|
|
* pbufs referencing external payloads.
|
|
*
|
|
* @ i the ARP entry index
|
|
* @arg q the pbuf (chain) to be queued on the ARP entry
|
|
*
|
|
* @return Returns the new head of queue of the ARP entry.
|
|
*
|
|
*/
|
|
static struct pbuf *
|
|
etharp_enqueue(s8_t i, struct pbuf *q)
|
|
{
|
|
/* any pbuf to queue? */
|
|
if (q != NULL) {
|
|
/* queue later packet over earliers? TODO: Implement multiple pbuf queue */
|
|
#if ARP_QUEUE_FIRST == 0
|
|
/* remove any pbufs on queue */
|
|
u8_t deq = etharp_dequeue(i);
|
|
if (deq > 0) LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE | 3, ("etharp_query: dequeued %u pbufs from ARP entry %u. Should not occur.\n", deq, i));
|
|
#endif
|
|
/* packet can be queued? TODO: Implement multiple pbuf queue */
|
|
if (arp_table[i].p == NULL) {
|
|
/* copy any PBUF_REF referenced payloads into PBUF_RAM */
|
|
q = pbuf_take(q);
|
|
/* add pbuf to queue */
|
|
arp_table[i].p = q;
|
|
/* pbuf (chain) now queued, increase the reference count */
|
|
pbuf_ref(q);
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE | DBG_STATE, ("etharp_query: queued packet %p on ARP entry %u.\n", (void *)q, i));
|
|
}
|
|
}
|
|
return arp_table[i].p;
|
|
}
|
|
|
|
/**
|
|
* Dequeues any pbufs queued on an ARP entry
|
|
*
|
|
* @return number of pbufs removed from the queue
|
|
*
|
|
* TODO: decide what is a sensible return value?
|
|
*/
|
|
static u8_t
|
|
etharp_dequeue(s8_t i)
|
|
{
|
|
/* queued packets on a stable entry (work in progress) */
|
|
if (arp_table[i].p != NULL) {
|
|
/* queue no longer references pbuf */
|
|
pbuf_free(arp_table[i].p);
|
|
arp_table[i].p = NULL;
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Update (or insert) a IP/MAC address pair in the ARP cache.
|
|
*
|
|
* If a pending entry is resolved, any queued packets will be sent
|
|
* at this point.
|
|
*
|
|
* @param ipaddr IP address of the inserted ARP entry.
|
|
* @param ethaddr Ethernet address of the inserted ARP entry.
|
|
* @param flags Defines behaviour:
|
|
* - ARP_INSERT_FLAG Allows ARP to insert this as a new item. If not specified,
|
|
* only existing ARP entries will be updated.
|
|
*
|
|
* @return pbuf If non-NULL, a packet that was queued on a pending entry.
|
|
* You should sent it and must call pbuf_free() afterwards.
|
|
*
|
|
* @see pbuf_free()
|
|
*/
|
|
static struct pbuf *
|
|
update_arp_entry(struct netif *netif, struct ip_addr *ipaddr, struct eth_addr *ethaddr, u8_t flags)
|
|
{
|
|
s8_t i, k;
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE | 3, ("update_arp_entry()\n"));
|
|
LWIP_ASSERT("netif->hwaddr_len != 0", netif->hwaddr_len != 0);
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("update_arp_entry: %u.%u.%u.%u - %02x:%02x:%02x:%02x:%02x:%02x\n", ip4_addr1(ipaddr), ip4_addr2(ipaddr), ip4_addr3(ipaddr), ip4_addr4(ipaddr),
|
|
ethaddr->addr[0], ethaddr->addr[1], ethaddr->addr[2], ethaddr->addr[3], ethaddr->addr[4], ethaddr->addr[5]));
|
|
/* do not update for 0.0.0.0 addresses */
|
|
if (ipaddr->addr == 0) {
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("update_arp_entry: will not add 0.0.0.0 to ARP cache\n"));
|
|
return NULL;
|
|
}
|
|
/* Walk through the ARP mapping table and try to find an entry to
|
|
update. If none is found, the IP -> MAC address mapping is
|
|
inserted in the ARP table. */
|
|
for (i = 0; i < ARP_TABLE_SIZE; ++i) {
|
|
/* Check if the source IP address of the incoming packet matches
|
|
the IP address in this ARP table entry. */
|
|
if (ip_addr_cmp(ipaddr, &arp_table[i].ipaddr)) {
|
|
/* pending entry? */
|
|
if (arp_table[i].state == ETHARP_STATE_PENDING) {
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("update_arp_entry: pending entry %u goes stable\n", i));
|
|
/* A pending entry was found, mark it stable */
|
|
arp_table[i].state = ETHARP_STATE_STABLE;
|
|
/* fall-through to next if */
|
|
}
|
|
/* stable entry? (possibly just marked to become stable) */
|
|
if (arp_table[i].state == ETHARP_STATE_STABLE) {
|
|
#if ARP_QUEUEING
|
|
struct pbuf *p;
|
|
struct eth_hdr *ethhdr;
|
|
#endif
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("update_arp_entry: updating stable entry %u\n", i));
|
|
/* An old entry found, update this and return. */
|
|
for (k = 0; k < netif->hwaddr_len; ++k) {
|
|
arp_table[i].ethaddr.addr[k] = ethaddr->addr[k];
|
|
}
|
|
/* reset time stamp */
|
|
arp_table[i].ctime = 0;
|
|
/* this is where we will send out queued packets! */
|
|
#if ARP_QUEUEING
|
|
/* get the first packet on the queue (if any) */
|
|
p = arp_table[i].p;
|
|
/* (another) queued packet present? */
|
|
while (p != NULL) {
|
|
struct pbuf *q, *n;
|
|
/* search for second packet on queue (n) */
|
|
q = p;
|
|
while (q->tot_len > q->len) {
|
|
LWIP_ASSERT("q->next != NULL (while q->tot_len > q->len)", q->next != NULL);
|
|
/* proceed to next pbuf of this packet */
|
|
q = q->next;
|
|
}
|
|
/* { q = last pbuf of this packet, q->tot_len == q->len } */
|
|
LWIP_ASSERT("q->tot_len == q->len", q->tot_len == q->len);
|
|
/* remember next packet on queue */
|
|
n = q->next;
|
|
/* { n = first pbuf of next packet, or NULL if no next packet } */
|
|
/* terminate this packet pbuf chain */
|
|
q->next = NULL;
|
|
/* fill-in Ethernet header */
|
|
ethhdr = p->payload;
|
|
for (k = 0; k < netif->hwaddr_len; ++k) {
|
|
ethhdr->dest.addr[k] = ethaddr->addr[k];
|
|
ethhdr->src.addr[k] = netif->hwaddr[k];
|
|
}
|
|
ethhdr->type = htons(ETHTYPE_IP);
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("update_arp_entry: sending queued IP packet %p.\n", (void *)p));
|
|
/* send the queued IP packet */
|
|
netif->linkoutput(netif, p);
|
|
/* free the queued IP packet */
|
|
pbuf_free(p);
|
|
/* proceed to next packet on queue */
|
|
p = n;
|
|
}
|
|
/* NULL attached buffer*/
|
|
arp_table[i].p = NULL;
|
|
#endif
|
|
/* IP addresses should only occur once in the ARP entry, we are done */
|
|
return NULL;
|
|
}
|
|
} /* if STABLE */
|
|
} /* for all ARP entries */
|
|
|
|
/* no matching ARP entry was found */
|
|
LWIP_ASSERT("update_arp_entry: i == ARP_TABLE_SIZE", i == ARP_TABLE_SIZE);
|
|
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("update_arp_entry: IP address not yet in table\n"));
|
|
/* allowed to insert an entry? */
|
|
if ((ETHARP_ALWAYS_INSERT) || (flags & ARP_INSERT_FLAG))
|
|
{
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("update_arp_entry: adding entry to table\n"));
|
|
/* find an empty or old entry. */
|
|
i = find_arp_entry();
|
|
if (i == ERR_MEM) {
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("update_arp_entry: no available entry found\n"));
|
|
return NULL;
|
|
}
|
|
/* set IP address */
|
|
ip_addr_set(&arp_table[i].ipaddr, ipaddr);
|
|
/* set Ethernet hardware address */
|
|
for (k = 0; k < netif->hwaddr_len; ++k) {
|
|
arp_table[i].ethaddr.addr[k] = ethaddr->addr[k];
|
|
}
|
|
/* reset time-stamp */
|
|
arp_table[i].ctime = 0;
|
|
/* mark as stable */
|
|
arp_table[i].state = ETHARP_STATE_STABLE;
|
|
/* no queued packet */
|
|
#if ARP_QUEUEING
|
|
arp_table[i].p = NULL;
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("update_arp_entry: no matching stable entry to update\n"));
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* Updates the ARP table using the given IP packet.
|
|
*
|
|
* Uses the incoming IP packet's source address to update the
|
|
* ARP cache for the local network. The function does not alter
|
|
* or free the packet. This function must be called before the
|
|
* packet p is passed to the IP layer.
|
|
*
|
|
* @param netif The lwIP network interface on which the IP packet pbuf arrived.
|
|
* @param pbuf The IP packet that arrived on netif.
|
|
*
|
|
* @return NULL
|
|
*
|
|
* @see pbuf_free()
|
|
*/
|
|
struct pbuf *
|
|
etharp_ip_input(struct netif *netif, struct pbuf *p)
|
|
{
|
|
struct ethip_hdr *hdr;
|
|
|
|
/* Only insert an entry if the source IP address of the
|
|
incoming IP packet comes from a host on the local network. */
|
|
hdr = p->payload;
|
|
/* source is on local network? */
|
|
if (!ip_addr_maskcmp(&(hdr->ip.src), &(netif->ip_addr), &(netif->netmask))) {
|
|
/* do nothing */
|
|
return NULL;
|
|
}
|
|
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_ip_input: updating ETHARP table.\n"));
|
|
/* update ARP table, ask to insert entry */
|
|
update_arp_entry(netif, &(hdr->ip.src), &(hdr->eth.src), ARP_INSERT_FLAG);
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/**
|
|
* Responds to ARP requests to us. Upon ARP replies to us, add entry to cache
|
|
* send out queued IP packets. Updates cache with snooped address pairs.
|
|
*
|
|
* Should be called for incoming ARP packets. The pbuf in the argument
|
|
* is freed by this function.
|
|
*
|
|
* @param netif The lwIP network interface on which the ARP packet pbuf arrived.
|
|
* @param pbuf The ARP packet that arrived on netif. Is freed by this function.
|
|
* @param ethaddr Ethernet address of netif.
|
|
*
|
|
* @return NULL
|
|
*
|
|
* @see pbuf_free()
|
|
*/
|
|
struct pbuf *
|
|
etharp_arp_input(struct netif *netif, struct eth_addr *ethaddr, struct pbuf *p)
|
|
{
|
|
struct etharp_hdr *hdr;
|
|
u8_t i;
|
|
u8_t for_us;
|
|
|
|
/* drop short ARP packets */
|
|
if (p->tot_len < sizeof(struct etharp_hdr)) {
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE | 1, ("etharp_arp_input: packet dropped, too short (%d/%d)\n", p->tot_len, sizeof(struct etharp_hdr)));
|
|
pbuf_free(p);
|
|
return NULL;
|
|
}
|
|
|
|
hdr = p->payload;
|
|
|
|
/* this interface is not configured? */
|
|
if (netif->ip_addr.addr == 0) {
|
|
for_us = 0;
|
|
} else {
|
|
/* ARP packet directed to us? */
|
|
for_us = ip_addr_cmp(&(hdr->dipaddr), &(netif->ip_addr));
|
|
}
|
|
|
|
/* add or update entries in the ARP cache */
|
|
if (for_us) {
|
|
/* insert IP address in ARP cache (assume requester wants to talk to us)
|
|
* we might even send out a queued packet to this host */
|
|
update_arp_entry(netif, &(hdr->sipaddr), &(hdr->shwaddr), ARP_INSERT_FLAG);
|
|
/* request was not directed to us, but snoop anyway */
|
|
} else {
|
|
/* update the source IP address in the cache */
|
|
update_arp_entry(netif, &(hdr->sipaddr), &(hdr->shwaddr), 0);
|
|
}
|
|
|
|
switch (htons(hdr->opcode)) {
|
|
/* ARP request? */
|
|
case ARP_REQUEST:
|
|
/* ARP request. If it asked for our address, we send out a
|
|
reply. In any case, we time-stamp any existing ARP entry,
|
|
and possiby send out an IP packet that was queued on it. */
|
|
|
|
LWIP_DEBUGF (ETHARP_DEBUG | DBG_TRACE, ("etharp_arp_input: incoming ARP request\n"));
|
|
/* we are not configured? */
|
|
if (netif->ip_addr.addr == 0) {
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_arp_input: we are unconfigured, ARP request ignored.\n"));
|
|
pbuf_free(p);
|
|
return NULL;
|
|
}
|
|
/* ARP request for our address? */
|
|
if (for_us) {
|
|
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_arp_input: replying to ARP request for our IP address\n"));
|
|
/* re-use pbuf to send ARP reply */
|
|
hdr->opcode = htons(ARP_REPLY);
|
|
|
|
ip_addr_set(&(hdr->dipaddr), &(hdr->sipaddr));
|
|
ip_addr_set(&(hdr->sipaddr), &(netif->ip_addr));
|
|
|
|
for(i = 0; i < netif->hwaddr_len; ++i) {
|
|
hdr->dhwaddr.addr[i] = hdr->shwaddr.addr[i];
|
|
hdr->shwaddr.addr[i] = ethaddr->addr[i];
|
|
hdr->ethhdr.dest.addr[i] = hdr->dhwaddr.addr[i];
|
|
hdr->ethhdr.src.addr[i] = ethaddr->addr[i];
|
|
}
|
|
|
|
hdr->hwtype = htons(HWTYPE_ETHERNET);
|
|
ARPH_HWLEN_SET(hdr, netif->hwaddr_len);
|
|
|
|
hdr->proto = htons(ETHTYPE_IP);
|
|
ARPH_PROTOLEN_SET(hdr, sizeof(struct ip_addr));
|
|
|
|
hdr->ethhdr.type = htons(ETHTYPE_ARP);
|
|
/* return ARP reply */
|
|
netif->linkoutput(netif, p);
|
|
|
|
/* request was not directed to us */
|
|
} else {
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_arp_input: incoming ARP request was not for us.\n"));
|
|
}
|
|
break;
|
|
case ARP_REPLY:
|
|
/* ARP reply. We insert or update the ARP table later. */
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_arp_input: incoming ARP reply\n"));
|
|
#if (LWIP_DHCP && DHCP_DOES_ARP_CHECK)
|
|
/* DHCP wants to know about ARP replies to our wanna-have-address */
|
|
if (for_us) dhcp_arp_reply(netif, &hdr->sipaddr);
|
|
#endif
|
|
break;
|
|
default:
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_arp_input: ARP unknown opcode type %d\n", htons(hdr->opcode)));
|
|
break;
|
|
}
|
|
/* free ARP packet */
|
|
pbuf_free(p);
|
|
p = NULL;
|
|
/* nothing to send, we did it! */
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* Resolve and fill-in Ethernet address header for outgoing packet.
|
|
*
|
|
* If ARP has the Ethernet address in cache, the given packet is
|
|
* returned, ready to be sent.
|
|
*
|
|
* If ARP does not have the Ethernet address in cache the packet is
|
|
* queued (if enabled and space available) and a ARP request is sent.
|
|
* This ARP request is returned as a pbuf, which should be sent by
|
|
* the caller.
|
|
*
|
|
* A returned non-NULL packet should be sent by the caller.
|
|
*
|
|
* If ARP failed to allocate resources, NULL is returned.
|
|
*
|
|
* @param netif The lwIP network interface which the IP packet will be sent on.
|
|
* @param ipaddr The IP address of the packet destination.
|
|
* @param pbuf The pbuf(s) containing the IP packet to be sent.
|
|
*
|
|
* @return If non-NULL, a packet ready to be sent by caller.
|
|
*
|
|
*/
|
|
struct pbuf *
|
|
etharp_output(struct netif *netif, struct ip_addr *ipaddr, struct pbuf *q)
|
|
{
|
|
struct eth_addr *dest, *srcaddr, mcastaddr;
|
|
struct eth_hdr *ethhdr;
|
|
s8_t i;
|
|
|
|
/* make room for Ethernet header */
|
|
if (pbuf_header(q, sizeof(struct eth_hdr)) != 0) {
|
|
/* The pbuf_header() call shouldn't fail, and we'll just bail
|
|
out if it does.. */
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE | 2, ("etharp_output: could not allocate room for header.\n"));
|
|
LINK_STATS_INC(link.lenerr);
|
|
return NULL;
|
|
}
|
|
|
|
/* assume unresolved Ethernet address */
|
|
dest = NULL;
|
|
/* Construct Ethernet header. Start with looking up deciding which
|
|
MAC address to use as a destination address. Broadcasts and
|
|
multicasts are special, all other addresses are looked up in the
|
|
ARP table. */
|
|
|
|
/* destination IP address is an IP broadcast address? */
|
|
if (ip_addr_isany(ipaddr) || ip_addr_isbroadcast(ipaddr, netif)) {
|
|
/* broadcast on Ethernet also */
|
|
dest = (struct eth_addr *)ðbroadcast;
|
|
}
|
|
/* destination IP address is an IP multicast address? */
|
|
else if (ip_addr_ismulticast(ipaddr)) {
|
|
/* Hash IP multicast address to MAC address. */
|
|
mcastaddr.addr[0] = 0x01;
|
|
mcastaddr.addr[1] = 0x00;
|
|
mcastaddr.addr[2] = 0x5e;
|
|
mcastaddr.addr[3] = ip4_addr2(ipaddr) & 0x7f;
|
|
mcastaddr.addr[4] = ip4_addr3(ipaddr);
|
|
mcastaddr.addr[5] = ip4_addr4(ipaddr);
|
|
/* destination Ethernet address is multicast */
|
|
dest = &mcastaddr;
|
|
}
|
|
/* destination IP address is an IP unicast address */
|
|
else {
|
|
/* destination IP network address not on local network?
|
|
* IP layer wants us to forward to the default gateway */
|
|
if (!ip_addr_maskcmp(ipaddr, &(netif->ip_addr), &(netif->netmask))) {
|
|
/* interface has default gateway? */
|
|
if (netif->gw.addr != 0)
|
|
{
|
|
/* route to default gateway IP address */
|
|
ipaddr = &(netif->gw);
|
|
}
|
|
/* no gateway available? */
|
|
else
|
|
{
|
|
/* IP destination address outside local network, but no gateway available */
|
|
/* { packet is discarded } */
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* Ethernet address for IP destination address is in ARP cache? */
|
|
for (i = 0; i < ARP_TABLE_SIZE; ++i) {
|
|
/* match found? */
|
|
if (arp_table[i].state == ETHARP_STATE_STABLE &&
|
|
ip_addr_cmp(ipaddr, &arp_table[i].ipaddr)) {
|
|
dest = &arp_table[i].ethaddr;
|
|
break;
|
|
}
|
|
}
|
|
/* could not find the destination Ethernet address in ARP cache? */
|
|
if (dest == NULL) {
|
|
/* ARP query for the IP address, submit this IP packet for queueing */
|
|
/* TODO: How do we handle netif->ipaddr == ipaddr? */
|
|
etharp_query(netif, ipaddr, q);
|
|
/* { packet was queued (ERR_OK), or discarded } */
|
|
/* return nothing */
|
|
return NULL;
|
|
}
|
|
/* destination Ethernet address resolved from ARP cache */
|
|
else
|
|
{
|
|
/* fallthrough */
|
|
}
|
|
}
|
|
|
|
/* destination Ethernet address known */
|
|
if (dest != NULL) {
|
|
/* obtain source Ethernet address of the given interface */
|
|
srcaddr = (struct eth_addr *)netif->hwaddr;
|
|
|
|
/* A valid IP->MAC address mapping was found, fill in the
|
|
* Ethernet header for the outgoing packet */
|
|
ethhdr = q->payload;
|
|
|
|
for(i = 0; i < netif->hwaddr_len; i++) {
|
|
ethhdr->dest.addr[i] = dest->addr[i];
|
|
ethhdr->src.addr[i] = srcaddr->addr[i];
|
|
}
|
|
|
|
ethhdr->type = htons(ETHTYPE_IP);
|
|
/* return the outgoing packet */
|
|
return q;
|
|
}
|
|
/* never reached; here for safety */
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* Send an ARP request for the given IP address.
|
|
*
|
|
* Sends an ARP request for the given IP address, unless
|
|
* a request for this address is already pending. Optionally
|
|
* queues an outgoing packet on the resulting ARP entry.
|
|
*
|
|
* @param netif The lwIP network interface where ipaddr
|
|
* must be queried for.
|
|
* @param ipaddr The IP address to be resolved.
|
|
* @param q If non-NULL, a pbuf that must be queued on the
|
|
* ARP entry for the ipaddr IP address.
|
|
*
|
|
* @return NULL.
|
|
*
|
|
* @note Might be used in the future by manual IP configuration
|
|
* as well.
|
|
*
|
|
* TODO: use the ctime field to see how long ago an ARP request was sent,
|
|
* possibly retry.
|
|
*/
|
|
err_t etharp_query(struct netif *netif, struct ip_addr *ipaddr, struct pbuf *q)
|
|
{
|
|
struct eth_addr *srcaddr;
|
|
struct etharp_hdr *hdr;
|
|
err_t result = ERR_OK;
|
|
s8_t i;
|
|
u8_t perform_arp_request = 1;
|
|
/* prevent 'unused argument' warning if ARP_QUEUEING == 0 */
|
|
(void)q;
|
|
srcaddr = (struct eth_addr *)netif->hwaddr;
|
|
/* bail out if this IP address is pending */
|
|
for (i = 0; i < ARP_TABLE_SIZE; ++i) {
|
|
if (ip_addr_cmp(ipaddr, &arp_table[i].ipaddr)) {
|
|
if (arp_table[i].state == ETHARP_STATE_PENDING) {
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE | DBG_STATE, ("etharp_query: requested IP already pending as entry %u\n", i));
|
|
/* break out of for-loop, user may wish to queue a packet on a pending entry */
|
|
/* TODO: we will issue a new ARP request, which should not occur too often */
|
|
/* we might want to run a faster timer on ARP to limit this */
|
|
break;
|
|
}
|
|
else if (arp_table[i].state == ETHARP_STATE_STABLE) {
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE | DBG_STATE, ("etharp_query: requested IP already stable as entry %u\n", i));
|
|
/* user may wish to queue a packet on a stable entry, so we proceed without ARP requesting */
|
|
/* TODO: even if the ARP entry is stable, we might do an ARP request anyway */
|
|
perform_arp_request = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
/* queried address not yet in ARP table? */
|
|
if (i == ARP_TABLE_SIZE) {
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_query: IP address not found in ARP table\n"));
|
|
/* find an available (unused or old) entry */
|
|
i = find_arp_entry();
|
|
/* bail out if no ARP entries are available */
|
|
if (i == ERR_MEM) {
|
|
LWIP_DEBUGF(ETHARP_DEBUG | 2, ("etharp_query: no more ARP entries available. Should seldom occur.\n"));
|
|
return ERR_MEM;
|
|
}
|
|
/* i is available, create ARP entry */
|
|
arp_table[i].state = ETHARP_STATE_PENDING;
|
|
ip_addr_set(&arp_table[i].ipaddr, ipaddr);
|
|
/* queried address was already in ARP table */
|
|
} else {
|
|
#if ARP_QUEUEING
|
|
etharp_enqueue(i, q);
|
|
#endif
|
|
}
|
|
/* ARP request? */
|
|
if (perform_arp_request)
|
|
{
|
|
struct pbuf *p;
|
|
/* allocate a pbuf for the outgoing ARP request packet */
|
|
p = pbuf_alloc(PBUF_LINK, sizeof(struct etharp_hdr), PBUF_RAM);
|
|
/* could allocate pbuf? */
|
|
if (p != NULL) {
|
|
u8_t j;
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_query: sending ARP request.\n"));
|
|
hdr = p->payload;
|
|
hdr->opcode = htons(ARP_REQUEST);
|
|
for (j = 0; j < netif->hwaddr_len; ++j)
|
|
{
|
|
hdr->shwaddr.addr[j] = srcaddr->addr[j];
|
|
/* the hardware address is what we ask for, in
|
|
* a request it is a don't-care, we use 0's */
|
|
hdr->dhwaddr.addr[j] = 0x00;
|
|
}
|
|
ip_addr_set(&(hdr->dipaddr), ipaddr);
|
|
ip_addr_set(&(hdr->sipaddr), &(netif->ip_addr));
|
|
|
|
hdr->hwtype = htons(HWTYPE_ETHERNET);
|
|
ARPH_HWLEN_SET(hdr, netif->hwaddr_len);
|
|
|
|
hdr->proto = htons(ETHTYPE_IP);
|
|
ARPH_PROTOLEN_SET(hdr, sizeof(struct ip_addr));
|
|
for (j = 0; j < netif->hwaddr_len; ++j)
|
|
{
|
|
hdr->ethhdr.dest.addr[j] = 0xff;
|
|
hdr->ethhdr.src.addr[j] = srcaddr->addr[j];
|
|
}
|
|
hdr->ethhdr.type = htons(ETHTYPE_ARP);
|
|
/* send ARP query */
|
|
result = netif->linkoutput(netif, p);
|
|
/* free ARP query packet */
|
|
pbuf_free(p);
|
|
p = NULL;
|
|
} else {
|
|
result = ERR_MEM;
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE | 2, ("etharp_query: could not allocate pbuf for ARP request.\n"));
|
|
}
|
|
}
|
|
return result;
|
|
}
|